Depolarization induces Rho-Rho kinase-mediated myosin light chain phosphorylation in kidney tubular cells.

نویسندگان

  • Katalin Szászi
  • Gábor Sirokmány
  • Caterina Di Ciano-Oliveira
  • Ori D Rotstein
  • András Kapus
چکیده

Myosin-based contractility plays important roles in the regulation of epithelial functions, particularly paracellular permeability. However, the triggering factors and the signaling pathways that control epithelial myosin light chain (MLC) phosphorylation have not been elucidated. Herein we show that plasma membrane depolarization provoked by distinct means, including high extracellular K(+), the lipophilic cation tetraphenylphosphonium, or the ionophore nystatin, induced strong diphosphorylation of MLC in kidney epithelial cells. In sharp contrast to smooth muscle, depolarization of epithelial cells did not provoke a Ca(2+) signal, and removal of external Ca(2+) promoted rather than inhibited MLC phosphorylation. Moreover, elevation of intracellular Ca(2+) did not induce significant MLC phosphorylation, and the myosin light chain kinase (MLCK) inhibitor ML-7 did not prevent the depolarization-induced MLC response, suggesting that MLCK is not a regulated element in this process. Instead, the Rho-Rho kinase (ROK) pathway is the key mediator because 1) depolarization stimulated Rho and induced its peripheral translocation, 2) inhibition of Rho by Clostridium difficile toxin B or C3 transferase abolished MLC phosphorylation, and 3) the ROK inhibitor Y-27632 suppressed the effect. Importantly, physiological depolarizing stimuli were able to activate the same pathway: L-alanine, the substrate of the electrogenic Na(+)-alanine cotransporter, stimulated Rho and induced Y-27632-sensitive MLC phosphorylation in a Na(+)-dependent manner. Together, our results define a novel mode of the regulation of MLC phosphorylation in epithelial cells, which is depolarization triggered and Rho-ROK-mediated but Ca(2+) signal independent. This pathway may be a central mechanism whereby electrogenic transmembrane transport processes control myosin phosphorylation and thereby regulate paracellular transport.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Extracellular signal-regulated kinase and GEF-H1 mediate depolarization-induced Rho activation and paracellular permeability increase.

Plasma membrane depolarization activates the Rho/Rho kinase (ROK) pathway and thereby enhances myosin light chain (MLC) phosphorylation, which in turn is thought to be a key regulator of paracellular permeability. However, the upstream mechanisms that couple depolarization to Rho activation and permeability changes are unknown. Here we show that three different depolarizing stimuli (high extrac...

متن کامل

Cyclic AMP blocks bacterial lipopolysaccharide-induced myosin light chain phosphorylation in endothelial cells through inhibition of Rho/Rho kinase signaling.

During Gram-negative sepsis bacterial LPS induces endothelial cell contraction, actin reorganization, and loss of endothelial integrity by an unknown signal mechanism. In this study, we provide evidence that LPS-stimulation of endothelial cells (HUVEC) decreases myosin light chain (MLC) phosphatase, resulting in an increase in MLC phosphorylation followed by cell contraction. All of these LPS e...

متن کامل

Rho kinase inhibitor HA-1077 prevents Rho-mediated myosin phosphatase inhibition in smooth muscle cells.

In smooth muscle, a Rho-regulated system of myosin phosphatase exists; however, it has yet to be established whether Rho kinase, one of the downstream effectors of Rho, mediates the regulation of myosin phosphatase activity in vivo. In the present study, we demonstrate in permeabilized vascular smooth muscle cells (SMCs) that the vasodilator 1-(5-isoquinolinesulfonyl)-homopiperazine (HA-1077), ...

متن کامل

Role for G(12)/G(13) in agonist-induced vascular smooth muscle cell contraction.

Receptor-induced vascular smooth muscle cell contraction is mediated by dual regulation of myosin light chain (MLC(20)) phosphorylation through Ca(2+)-dependent stimulation of myosin light chain kinase and Rho/Rho-kinase-mediated inhibition of myosin phosphatase. Although myosin light chain kinase regulation is initiated by the coupling of receptors to G proteins of the G(q) family, G(q) and G(...

متن کامل

Asymmetric distribution of myosin IIB in migrating endothelial cells is regulated by a rho-dependent kinase and contributes to tail retraction Running title: Myosin IIB asymmetry in migrating cells Key words: cell motility, cytoskeleton, polarity, myosin heavy chain, light chain phosphorylation

All vertebrates contain two nonmuscle myosin II heavy chains, A and B, which differ in tissue expression and subcellular distributions. To understand how these distinct distributions are controlled and what role they play in cell migration, myosin IIA and IIB were examined during wound healing by bovine aortic endothelial cells. Immunofluorescence showed that myosin IIA skewed toward the front ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Cell physiology

دوره 289 3  شماره 

صفحات  -

تاریخ انتشار 2005